Three independent signalling pathways repress motility in Pseudomonas fluorescens F113

نویسندگان

  • Ana Navazo
  • Emma Barahona
  • Miguel Redondo‐Nieto
  • Francisco Martínez‐Granero
  • Rafael Rivilla
  • Marta Martín
چکیده

Motility is one of the most important traits for rhizosphere colonization by pseudomonads. Despite this importance, motility is severely repressed in the rhizosphere-colonizing strain Pseudomonas fluorescens F113. This bacterium is unable to swarm under laboratory conditions and produce relatively small swimming haloes. However, phenotypic variants with the ability to swarm and producing swimming haloes up to 300% larger than the wild-type strain, arise during rhizosphere colonization. These variants harbour mutations in the genes encoding the GacA/GacS two-component system and in other genes. In order to identify genes and pathways implicated in motility repression, we have used generalized mutagenesis with transposons. Analysis of the mutants has shown that besides the Gac system, the Wsp system and the sadB gene, which have been previously implicated in cyclic di-GMP turnover, are implicated in motility repression: mutants in the gacS, sadB or wspR genes can swarm and produce swimming haloes larger than the wild-type strain. Epistasis analysis has shown that the pathways defined by each of these genes are independent, because double and triple mutants show an additive phenotype. Furthermore, GacS, SadB and WspR act at different levels. Expression of the fleQ gene, encoding the master regulator of flagella synthesis is higher in the gacS(-) and sadB(-) backgrounds than in the wild-type strain and this differential expression is reflected by a higher secretion of the flagellin protein FliC. Conversely, no differences in fleQ expression or FliC secretion were observed between the wild-type strain and the wspR(-) mutant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions

The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aer...

متن کامل

Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces.

Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free-living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm ...

متن کامل

The Gac-Rsm and SadB Signal Transduction Pathways Converge on AlgU to Downregulate Motility in Pseudomonas fluorescens

Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge in the regulation of transcriptio...

متن کامل

Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization.

The ability of plant-associated micro-organisms to colonize and compete in the rhizosphere is specially relevant for the biotechnological application of micro-organisms as inoculants. Pseudomonads are one of the best root colonizers and they are widely used in plant-pathogen biocontrol and in soil bioremediation. This study analyses the motility mechanism of the well-known biocontrol strain Pse...

متن کامل

Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability.

Phenotypic variants of Pseudomonas fluorescens F113 showing a translucent and diffuse colony morphology show enhanced colonization of the alfalfa rhizosphere. We have previously shown that in the biocontrol agent P. fluorescens F113, phenotypic variation is mediated by the activity of two site-specific recombinases, Sss and XerD. By overexpressing the genes encoding either of the recombinases, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009